4,944 research outputs found

    Quantum Bit Commitment with a Composite Evidence

    Full text link
    Entanglement-based attacks, which are subtle and powerful, are usually believed to render quantum bit commitment insecure. We point out that the no-go argument leading to this view implicitly assumes the evidence-of-commitment to be a monolithic quantum system. We argue that more general evidence structures, allowing for a composite, hybrid (classical-quantum) evidence, conduce to improved security. In particular, we present and prove the security of the following protocol: Bob sends Alice an anonymous state. She inscribes her commitment bb by measuring part of it in the + (for b=0b = 0) or ×\times (for b=1b=1) basis. She then communicates to him the (classical) measurement outcome RxR_x and the part-measured anonymous state interpolated into other, randomly prepared qubits as her evidence-of-commitment.Comment: 6 pages, minor changes, journal reference adde

    Classical capacity of the lossy bosonic channel: the exact solution

    Full text link
    The classical capacity of the lossy bosonic channel is calculated exactly. It is shown that its Holevo information is not superadditive, and that a coherent-state encoding achieves capacity. The capacity of far-field, free-space optical communications is given as an example.Comment: 4 pages, 2 figures (revised version

    Analytical Blowup Solutions to the Pressureless Navier-Stokes-Poisson Equations with Density-dependent Viscosity in R^N

    Full text link
    We study the N-dimensional pressureless Navier--Stokes-Poisson equations with density-dependent viscosity. With the extension of the blowup solutions for the Euler-Poisson equations, the analytical blowup solutions,in radial symmetry, in R^N are constructed.Comment: 12 Pages, more detail in the introduction to explain the validity of the mode

    Probabilistic cloning with supplementary information

    Full text link
    We consider probabilistic cloning of a state chosen from a mutually nonorthogonal set of pure states, with the help of a party holding supplementary information in the form of pure states. When the number of states is 2, we show that the best efficiency of producing m copies is always achieved by a two-step protocol in which the helping party first attempts to produce m-1 copies from the supplementary state, and if it fails, then the original state is used to produce m copies. On the other hand, when the number of states exceeds two, the best efficiency is not always achieved by such a protocol. We give examples in which the best efficiency is not achieved even if we allow any amount of one-way classical communication from the helping party.Comment: 6 pages, no figure

    Unified Treatment of Heterodyne Detection: the Shapiro-Wagner and Caves Frameworks

    Full text link
    A comparative study is performed on two heterodyne systems of photon detectors expressed in terms of a signal annihilation operator and an image band creation operator called Shapiro-Wagner and Caves' frame, respectively. This approach is based on the introduction of a convenient operator ψ^\hat \psi which allows a unified formulation of both cases. For the Shapiro-Wagner scheme, where [ψ^,ψ^]=0[\hat \psi, \hat \psi^{\dag}] =0, quantum phase and amplitude are exactly defined in the context of relative number state (RNS) representation, while a procedure is devised to handle suitably and in a consistent way Caves' framework, characterized by [ψ^,ψ^]0[\hat \psi, \hat \psi^{\dag}] \neq 0, within the approximate simultaneous measurements of noncommuting variables. In such a case RNS phase and amplitude make sense only approximately.Comment: 25 pages. Just very minor editorial cosmetic change

    Determination of quantum-noise parameters of realistic cavities

    Get PDF
    A procedure is developed which allows one to measure all the parameters occurring in a complete model [A.A. Semenov et al., Phys. Rev. A 74, 033803 (2006); quant-ph/0603043] of realistic leaky cavities with unwanted noise. The method is based on the reflection of properly chosen test pulses by the cavity.Comment: 5 pages, 2 figure

    Cloning of Gaussian states by linear optics

    Full text link
    We analyze in details a scheme for cloning of Gaussian states based on linear optical components and homodyne detection recently demonstrated by U. L. Andersen et al. [PRL 94 240503 (2005)]. The input-output fidelity is evaluated for a generic (pure or mixed) Gaussian state taking into account the effect of non-unit quantum efficiency and unbalanced mode-mixing. In addition, since in most quantum information protocols the covariance matrix of the set of input states is not perfectly known, we evaluate the average cloning fidelity for classes of Gaussian states with the degree of squeezing and the number of thermal photons being only partially known.Comment: 8 pages, 7 figure
    corecore